

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

June 2002 Revised March 2004

FAIRCHILD

SEMICONDUCTOR

NC7SP125 TinyLogic® ULP Buffer with 3-STATE Output

General Description

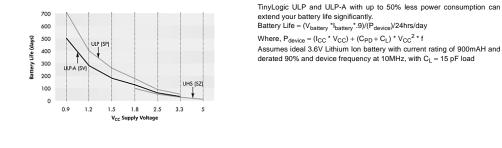
The NC7SP125 is a single Buffer with 3-STATE output from Fairchild's Ultra Low Power (ULP) series of TinyLogic®. Ideal for applications where battery life is critical, this product is designed for ultra low power consumption within the $\rm V_{CC}$ operating range of 0.9V to 3.6V.

The internal circuit is composed of a minimum of inverter stages, including the output buffer, to enable ultra low static and dynamic power.

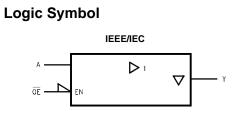
The NC7SP125, for lower drive requirements, is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve best in class speed operation while maintaining extremely low CMOS power dissipation.

Features

- 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V


■ t_{PD}

- 3 ns typ for 3.0V to 3.6V V_{CC}
- 4 ns typ for 2.3V to 2.7V V_{CC}
- 5 ns typ for 1.65V to 1.95V V_{CC}
- 6 ns typ for 1.40V to 1.60V V_{CC}
- 10 ns typ for 1.10V to 1.30V $V_{\mbox{CC}}$
- 26 ns typ for 0.90V V_{CC}
- Power-Off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL}) ±2.6 mA @ 3.00V V_{CC} ±2.1 mA @ 2.30V V_{CC} ±1.5 mA @ 1.65V V_{CC} ±1.0 mA @ 1.40V V_{CC} ±0.5 mA @ 1.10V V_{CC}
- ±20 μA @ 0.9V V_{CC} ■ Uses patented Quiet Series[™] noise/EMI reduction
- circuitry ■ Ultra small MicroPak™ leadfree packages
- Ultra low dynamic power


Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SP125P5X	MAA05A	P25	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7SP125L6X	MAC06A	L5	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Battery Life vs. V_{CC} Supply Voltage

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. Quiet Series™ and MicroPak™ are trademarks of Fairchild Semiconductor Corporation.

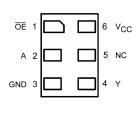
Pin Descriptions

Pin Names	Description
A, OE	Input
Y	Output
NC	No Connect

Function Table

Inp	out	Output
OE	In A	Out Y
L	L	L
L	н	н
Н	Х	Z

H = HIGH Logic Level L = LOW Logic Level X = HIGH or LOW Logic Level Z = HIGH Impedance State


Connection Diagrams

Pin Assignments for SC70

(Top View)

Pad Assignments for MicroPak

(Top Thru View)

Absolute Maximum Rati	Ngs (Note 1)	Recommended Operatin	g
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 3)	
DC Input Voltage (V _{IN})	-0.5V to +4.6V	Supply Voltage	0.9V to 3.6V
DC Output Voltage (V _{OUT})		Input Voltage (V _{IN})	0V to 3.6V
HIGH or LOW State (Note 2)	–0.5V to V _{CC} +0.5V	Output Voltage (V _{OUT})	
$V_{CC} = 0V$	-0.5V to 4.6V	HIGH or LOW State	0V to V_{CC}
DC Input Diode Current (I_{IK}) $V_{IN} < 0V$	±50 mA	$V_{CC} = 0V$	0V to 3.6V
DC Output Diode Current (I _{OK})		Output Current in I _{OH} /I _{OL}	
V _{OUT} < 0V	–50 mA	$V_{CC} = 3.0V$ to $3.6V$	±2.6 mA
V _{OUT} > V _{CC}	+50 mA	$V_{CC} = 2.3V$ to 2.7V	± 2.1 mA
DC Output Source/Sink Current (I _{OH} /I _{OL})	\pm 50 mA	V _{CC} = 1.65V to 1.95V	± 1.5 mA
DC V _{CC} or Ground Current per		V _{CC} = 1.40V to 1.60V	± 1 mA
Supply Pin (I _{CC} or Ground)	\pm 50 mA	V _{CC} = 1.10V to 1.30V	±0.5 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	$V_{CC} = 0.9V$	±20 μA
		Free Air Operating Temperature (T_A)	$-40^\circ C$ to $+85^\circ C$

10 ns/V

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for

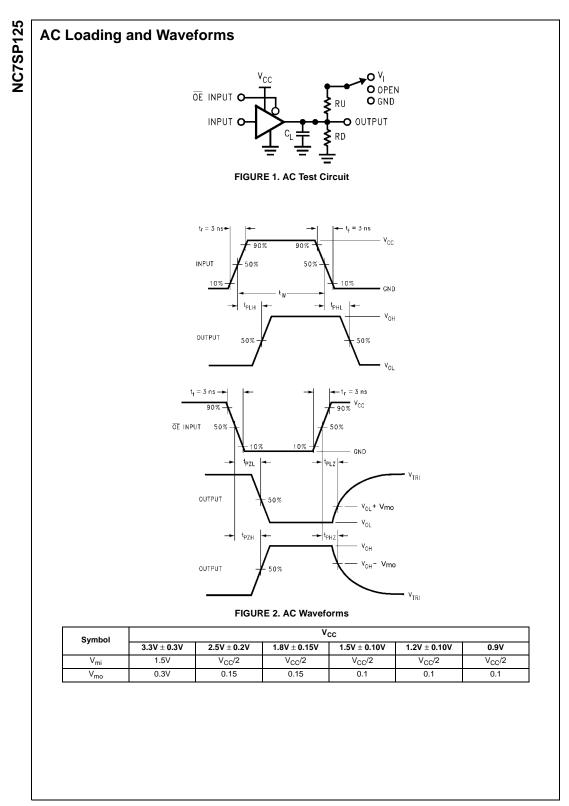
actual device operation. Note 2: I_O Absolute Maximum Rating must be observed.

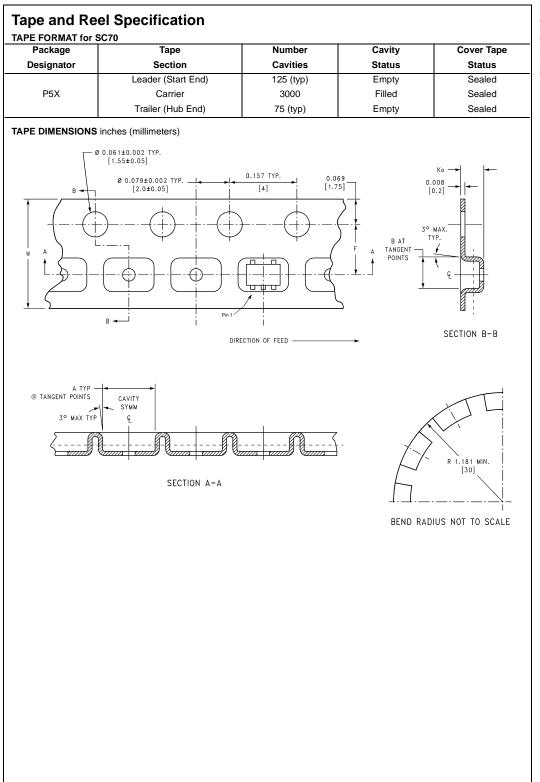
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

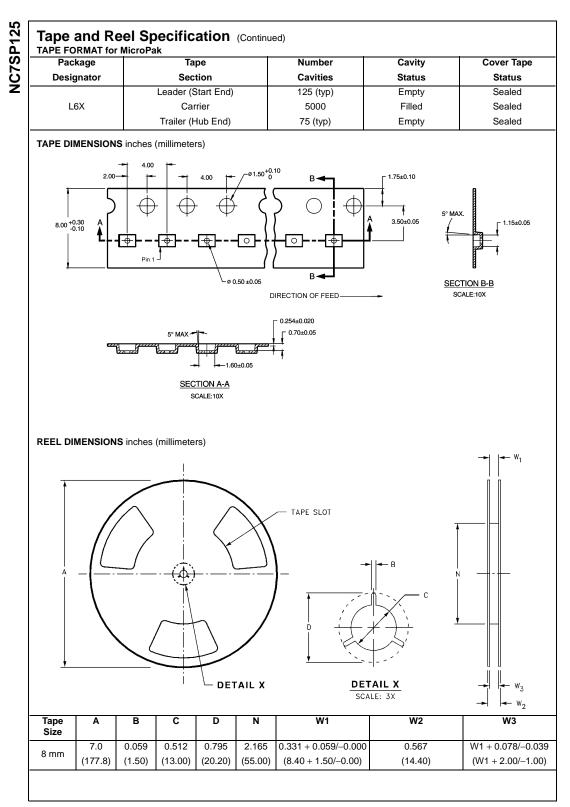
Symbol	Parameter	V _{cc}	$T_A = -$	+25°C	$T_A = -40^{\circ}$	C to +85°C	Units	Conditions
c)	i ulunotor	(V)	Min	Max	Min	Max	onits	Conditiona
/ _{IH}	HIGH Level	0.90	0.65 x V _{CC}		0.65 x V _{CC}			
	Input Voltage	$1.10 \leq V_{CC} \leq 1.30$	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$			
		$1.40 \leq V_{CC} \leq 1.60$	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		v	
		$1.65 \leq V_{CC} \leq 1.95$	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		v	
		$2.30 \leq V_{CC} \leq 2.70$	1.6		1.6			
		$3.00 \leq V_{CC} \leq 3.60$	2.1		2.1			
ΪL	LOW Level	0.90		0.35 x V _{CC}		0.35 x V _{CC}		
	Input Voltage	$1.10 \leq V_{CC} \leq 1.30$		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$		
		$1.40 \leq V_{CC} \leq 1.60$		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$	v	
		$1.65 \leq V_{CC} \leq 1.95$		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$	v	
		$2.30 \leq V_{CC} \leq 2.70$		0.7		0.7		
		$3.00 \leq V_{CC} \leq 3.60$		0.9		0.9		
/ _{ОН}	HIGH Level	0.90	V _{CC} - 0.1		V _{CC} - 0.1			
	Output Voltage	$1.10 \leq V_{CC} \leq 1.30$			$V_{CC} - 0.1$			
		$1.40 \leq V_{CC} \leq 1.60$	$V_{CC} - 0.1$		$V_{CC} - 0.1$			I _{OH} = -20 μA
		$1.65 \leq V_{CC} \leq 1.95$	$V_{CC} - 0.1$		$V_{CC} - 0.1$			10H = -20 μΛ
		$2.30 \leq V_{CC} \leq 2.70$	$V_{CC} - 0.1$		$V_{CC} - 0.1$			
		$3.00 \leq V_{CC} \leq 3.60$	$V_{CC} - 0.1$		$V_{CC} - 0.1$		V	
		$1.10 \leq V_{CC} \leq 1.30$	$0.75 \times V_{CC}$		0.70 x V _{CC}			$I_{OH} = -0.5 \text{ mA}$
		$1.40 \leq V_{CC} \leq 1.60$	1.07		0.99			$I_{OH} = -1 \text{ mA}$
		$1.65 \leq V_{CC} \leq 1.95$	1.24		1.22			$I_{OH} = -1.5 \text{ mA}$
		$2.30 \leq V_{CC} \leq 2.70$	1.95		1.87			$I_{OH} = -2.1 \text{ mA}$
		$3.00 \leq V_{CC} \leq 3.60$	2.61		2.55			I _{OH} = -2.6 mA

DC Electrical Characteristics

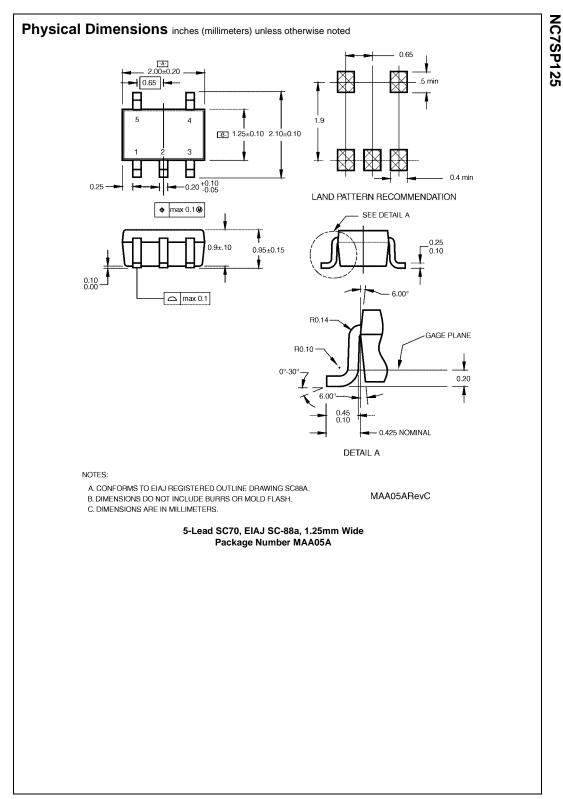
DC Electrical Characteristics (Continued)

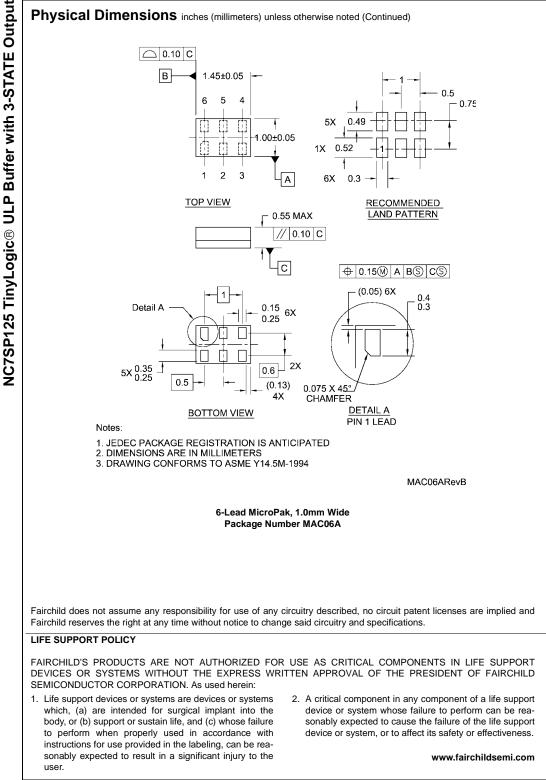

Symbol	Parameter	V _{cc}	T _A = +25°C		T _A = -40°C	C to +85°C	Units	Conditions
Symbol	Falameter	(V)	Min	Max	Min	Max	Units	conditions
√ _{OL}	LOW Level	0.90		0.1		0.1		
	Output Voltage	$1.10 \leq V_{CC} \leq 1.30$		0.1		0.1		
		$1.40 \leq V_{CC} \leq 1.60$		0.1		0.1		I _{OL} = 20 μA
		$1.65 \leq V_{CC} \leq 1.95$		0.1		0.1		$I_{OL} = 20 \mu A$
		$2.30 \leq V_{CC} \leq 2.70$		0.1		0.1		
		$3.00 \leq V_{CC} \leq 3.60$		0.1		0.1	V	
		$1.10 \leq V_{CC} \leq 1.30$	0	.30 x V _{CC}		$0.30 \times V_{CC}$		I _{OL} = 0.5 mA
		$1.40 \leq V_{CC} \leq 1.60$		0.31		0.37		I _{OL} = 1 mA
		$1.65 \leq V_{CC} \leq 1.95$		0.31		0.35		I _{OL} = 1.5 mA
		$2.30 \leq V_{CC} \leq 2.70$		0.31		0.33		I _{OL} = 2.1 mA
		$3.00 \leq V_{CC} \leq 3.60$		0.31		0.33		I _{OL} = 2.6 mA
IN	Input Leakage Current	0.90 to 3.60		±0.1		±0.5	μΑ	$0 \le V_I \le 3.6V$
oz	3-STATE Output	0.90 to 3.60		±0.5		±0.5		$V_I = V_{IH} \text{ or } V_{IL}$
	Leakage	0.90 10 3.60		±0.0		±0.5	μA	$0 \le V_O \le 3.6V$
IOFF	Power Off Leakage Current	0		0.5		0.5	μΑ	$0 \leq (V_I, V_O) \leq 3.6V$
Icc	Quiescent Supply Current	0.90 to 3.60		0.9		0.9	μA	$V_I = V_{CC}$ or GND


AC Electrical Characteristics


Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure	
Symbol	Farameter	(V)	Min	Тур	Мах	Min	Max	Units	Conditions	Numbe
t _{PHL}	Propagation Delay	0.90		26						
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	4.0	10	19.1	3.5	39.6			
		$1.40 \leq V_{CC} \leq 1.60$	2.0	6	11.2	1.5	14.5		$C_L = 10 \text{ pF}$	
		$1.65 \leq V_{CC} \leq 1.95$	1.5	5	8.6	1.0	11.6	ns	$R_L = 1 M\Omega$	
		$2.30 \leq V_{CC} \leq 2.70$	1.0	4	6.3	0.8	8.2			
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3	5.3	0.5	7.2			
^t PZH	Output	0.90		29					C _L = 10 pF	
PZL	Enable Time	$1.10 \leq V_{CC} \leq 1.30$	4.0	8	17.5	3.5	40.4		$R_U = 5000\Omega$	
		$1.40 \leq V_{CC} \leq 1.60$	2.0	6	11.9	1.5	14.8		$R_D = 5000\Omega$	
		$1.65 \leq V_{CC} \leq 1.95$	1.5	5	9.7	1.0	12.3	ns	$S_1 = GND$ for t_{PZH}	
		$2.30 \leq V_{CC} \leq 2.70$	1.0	4	7.7	0.8	10.5		$S_1 = V_I$ for t_{PZL}	
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3	6.9	0.5	8.6		$V_I = 2 \times V_{CC}$	
PHZ	Output	0.90		28					C _L = 10 pF	
^t PLZ	Disable Time	$1.10 \leq V_{CC} \leq 1.30$	4.0	8	20.5	3.5	42.0		$R_U = 5000 \Omega$	
		$1.40 \leq V_{CC} \leq 1.60$	2.0	6	15.3	1.5	18.0	ns	$R_D = 5000\Omega$	
		$1.65 \leq V_{CC} \leq 1.95$	1.5	5	14.7	1.0	17.8	115	$S_1 = GND$ for t_{PHZ}	
		$2.30 \leq V_{CC} \leq 2.70$	1.0	4	13.7	0.8	15.0		$S_1 = V_I \text{ for } t_{PLZ}$	
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3	13.5	0.5	14.8		$V_I = 2 \times V_{CC}$	
t _{PHL}	Propagation Delay	0.90		28						
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	5.0	10	20.5	4.5	42.5			
		$1.40 \leq V_{CC} \leq 1.60$	3.0	7	11.8	2.5	15.4	ns	$C_L = 15 \text{ pF}$	Figure
		$1.65 \leq V_{CC} \leq 1.95$	2.0	5	9.1	2.0	12.2	115	$R_L = 1 M\Omega$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.5	4	6.6	1.0	8.6			
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3	5.6	0.5	7.5			
t _{PZH}	Output	0.90		31					$C_L = 15 \text{ pF}$	
t _{PZL}	Enable Time	$1.10 \leq V_{CC} \leq 1.30$	5.0	11	18.2	4.5	43.3		$R_U = 5000\Omega$	
		$1.40 \leq V_{CC} \leq 1.60$	3.0	7	12.5	2.5	15.5	-	$R_D = 5000\Omega$	Figure
		$1.65 \leq V_{CC} \leq 1.95$	2.0	5	10.2	2.0	12.9	ns	$S_1 = GND$ for t_{PZH}	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.5	4	8.0	1.0	9.9		$S_1 = V_I \text{ for } t_{PLZ}$	
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3	7.2	0.5	8.9		$V_I = 2 \times V_{CC}$	

Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A=-40^\circ C$ to $+85^\circ C$		Units	A 11/1	Figure
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PHZ}	Output	0.90		30					C _L = 15 pF	
t _{PLZ}	Disable Time	$1.10 \leq V_{CC} \leq 1.30$	5.0	11	21.6	4.5	44.9		$R_U = 5000\Omega$	
		$1.40 \leq V_{CC} \leq 1.60$	3.0	7	15.9	2.5	18.8	ns	$R_D = 5000\Omega$	Figures
		$1.65 \leq V_{CC} \leq 1.95$	2.0	5	15.2	2.0	18.2	115	$S_1 = GND$ for t_{PHZ}	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.5	4	14.1	1.0	15.4		$S_1 = V_I \text{ for } t_{PLZ}$	
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3	13.9	0.5	15.1		$V_I = 2 \times V_{CC}$	
t _{PHL}	Propagation Delay	0.90		34						
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	5.5	12	23.4	5.0	51.1			
		$1.40 \leq V_{CC} \leq 1.60$	4.0	8	13.8	3.0	17.7	ns	$C_L = 30 \ pF\Omega$	Figures
		$1.65 \leq V_{CC} \leq 1.95$	2.0	6	10.6	2.0	14.0	115	$R_L = 1M\Omega$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.0	5	7.6	1.0	9.9			
		$3.00 \leq V_{CC} \leq 3.60$	0.8	4	6.4	0.5	8.9			
t _{PZH}	Output	0.90		37					C _L = 30 pF	
t _{PZL}	Enable Time	$1.10 \leq V_{CC} \leq 1.30$	6.0	13	24.4	5.0	51.9		$R_U = 5000\Omega$	
		$1.40 \leq V_{CC} \leq 1.60$	4.0	8	14.5	3.0	17.9	ns	$R_D = 5000\Omega$	Figures
		$1.65 \leq V_{CC} \leq 1.95$	2.0	6	11.7	2.0	14.7	115	$S_1 = GND$ for t_{PZH}	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.0	5	9.1	1.0	11.1		$S_1 = V_I \text{ for } t_{PZL}$	
		$3.00 \leq V_{CC} \leq 3.60$	0.8	4	8.1	0.5	10.1		$V_I = 2 \times V_{CC}$	
t _{PHZ}	Output	0.90		36					C _L = 30 pF	
t _{PLZ}	Disable Time	$1.10 \leq V_{CC} \leq 1.30$	6.0	13	24.8	5.0	53.5		$R_U = 5000\Omega$	
		$1.40 \leq V_{CC} \leq 1.60$	4.0	8	17.1	3.0	21.1	ns	$R_D = 5000\Omega$	Figures
		$1.65 \leq V_{CC} \leq 1.95$	2.0	6	16.5	2.0	20.5	115	$S_1 = GND$ for t_{PHZ}	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.0	5	15.2	1.0	16.7		$S_1 = V_I$ for t_{PLZ}	
		$3.00 \leq V_{CC} \leq 3.60$	0.8	4	14.8	0.5	16.3		$V_I = 2 \times V_{CC}$	
C _{IN}	Input Capacitance	0		2.0				pF		
C _{OUT}	Output Capacitance	0		4.0				pF		
C _{PD}	Power Dissipation Capacitance	0.9 to 3.60		8				pF	$V_I = 0V \text{ or } V_{CC},$ f = 10 MHz	


NC7SP125



8

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC